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ABSTRACT

An optimization analysis is presented for the design of axisymmetric
rocket motor nozzles with chemically reacting gas flows. The analysis is
based upon the usual assumptionsfor reacting flows. An arbitrary number
of chemical species and chemical reactions are included in the analysis.

The problem is formulated to maximize the pressure thrust integral along

the supersonic nozzle wall contour for a general isoperimetric constraint,
such as constant nozzle length or constant nozzle surface area. The govern-
ing partial differential equations for reacting flows are incorporated

into the analysis by means of Lagrange multipliers. The results of the
optimization analysis are a set of partial differential equations for
determining the Lagrange multipliers in the region of interest, and a

set of algebraic equations for determining initial conditions for these
Lagrange‘multipliers on the boundaries of the region., It is shown that

the complete set of equations for the gasdynamic properties and the Lagrange
multipliers constitutes a system of first order, quasi-linear, non-homo-
geneous partial differential equations of the hyperbolic type, which can

be treated by the method of characteristics. The characteristic and com-
patibility equations for the system are presented. A technique for em-
ploying the results to determine optimum thrust nozzle contours is pre-

sented.



I. INTRODUCTION

Many high energy propellant combinations used in propulsion engines
experience a considerable difference between the predicted performance
based upon isentropic shifting equilibrium and the actual performance.
These losses are due both to the presence of boundary layers and to the
nonequilibrium processes associated with chemical recombination lags,
thermodynamic relaxation, and velocity and thermal lags associated with
the flow of condensed phases. In the process of supersonic combustion,
the losses associated with the nonequilibrium process of chemical relax-
ation can completely determine the success or failure of the system. In
view of the important effect of the chemical recombination process in
the exhaust nozzle of both rocket engines and air breathing engines, it
is obvious that the nozzle design must be given careful consideration.

The Jet Propulsion Center, Purdue University, has had a continuing
interest in both nozzle analysis and design techniques for several years,
as evidenced by references 1 through 13. A recent paper by Thompson
and Murthy8 presents an optimization technique for the design of three-
dimensional nozzles for homentropic, perfect gas flows. The present
analysis presents an optimization technique for the design of axisym-
metric nozzles whose working fluid is a chemically reacting gas.

The first attempt at nozzle design by applying optimization tech-
niques was made by Guderley and Hantsch14 for an axisymmetric, hometropic

flow in a nozzle of fixed length. Rao15 later considered the same problem



as that investigated by Guderliey and Hantsch, and deveioped a design
technique which has proven to be much easier to apply. As a result,

Rao's technique is in wide use throughout the rocket industry. Guderley16
analyzed the differences between the approaches of references 14 and 15,
and extended the analysis to axisymmetric, isentropic flows with non-
constant entropy between streamlines. All of these analyses were based

on a one-dimensional control surface, illustrated in Fig. 1, consisting

of the left running Mach line BC which passes through the nozzle exit.
This approach is permissible when no dissapative effects are present in
the flow field, so that all the thermodynamic properties along the control
surface can be determined uniquely as a function of the velocity of the
flow. Effectively, the path taken by a streamline does not affect the
relationship between thermodynamic variables and fiow velocity.

7
17,18 fermuiated the problem of obtaining the

Guderley and Armitage
optimum contour for a fixed nozzle surface area. In this approach, the
entire region ABC in Fig. 1 must be considered. Although this analysis
was also restricted to a non-dissapative flow field, the technique can
be employed for dissaptive flows since the entire flow field is included
in the optimization analysis. The present anaiysis is based upon the
techniques developed in references 17 and 18.

Appleton19 presented a one-dimensional relaxation technique for min-
imizing the recombination losses in a nozzle. No account is taken of
the two-dimensional effects in the nozzle or the exit divergence loss.

Burwell et alo20 developed a design technique based upon a two-dimensional

analysis of a reacting fiow in truncated perfect nozzles. This technique
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has no guarantee of producing the optimum contour, although the results
obtained by such an approach are very useful. The present analysis is
an improvement in that the two-dimensional nature of the flow is accounted

for, and the optimum contour is obtained by employing the techniques of

the calculus of variations,



I1. TECHNICAL DEVELOPMENT

A, Analysis of Chemically Reacting Flows

The present analysis is based upon the usual assumptions for
axisymmetric chemically reacting flows as discussed in references
21, 22, and 23, The optimization procedure will be applied only to

the supersonic portion of the nozzle. Hence, the flow field up to

22 23

the supersonic region must be known. As discussed by Der”™ and Craig,
the flow in the subsonic portion of the nozzle can be treated by one-
dimensional techniques to determine a transonic initial value line.
The method of characteristics can then be employed to obtain the flow
field downstream of the throat, thus establishing a known flow field
with which the optimization procedure can be initiated.

The equations governing the axisymmetric flow of a chemically
reacting gas are developed in Appendix A in a form suitable for the
present application. This set of equations is valid for any number

of chemical species and any number of chemical reactions. The follow-

ing system of equations is applicable.

(1)

+ + + = -
pux OVY qu pr

<[2

]
(=]

(2)

+ +
puux pvuy Px

puv, + pvvy + Py =0 (3)
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()]

n
2 2
up_+ vpy - a%up, - avo = 121 v; (P,0,C) (4)
ou(Ci)x + pV(Ci)y = ci(P,o.C ) i=1,..,n) (5)
)
N n [oC; Vir n fEi iy
- " - 4 o -
9 = wi z (vir vir) kfr .H W. Krr .? W, (6)
=1 j=1 i i=1 j

n n

Jow = O IWRT - (Y-l)hi] o5 (N
i=1 i=1

n
P = pT 121 C;R, (8)
o \
h = _2 C;hy (9)
i=1
T (o]
h, = j C .dT + h° (10)
i r Pi i
[¢]

The species source function o, was obtained from the law of mass action,
The forward and reverse reaction rate constants, Kfr and Krr’ are obviously
functions of temperature. However, variations in temperature can be
expressed as variations in P, p, and Ck by employing the perfect gas law,
Eq. (8). In the present analysis, this substitution has been made so
that variations in g, can be expressed in terms of variations in P, p, and
Ck” Similar comments apply to the function Vs defined by Eq. (7). In
the terms z wi(P,p,Ck) and oi(P,p,Ck), the term Ck denotes that the function
involved depends upon all n of the mass fractions,

The flow of a chemically reacting gas is completely described by the

above set of equations, Eqs. (1) through (10). These equations will be



incorporated into the optimization analysis to insure that a physically
realizable solution is obtained.

B. Formulation of the Optimization Problem

In the present analysis of optimum thrust nozzle contours for chemically
reacting gas flows, only the supersonic portion of the nozzle can be optimized.
The subsonic and transonic nozzle contours must be prescribed beforehand, and
the optimum nozzle contour obtained is then the best contour for that par-
ticular choice of subsonic and transonic geometrics only. This restriction

14,16,17,18 15 in their nozzle optimization

has been employed by Guderley and Rao
studies involving inert gas flows.

The model to be considered as illustrated in Fig. 1. The right running
characteristic AB originating at point A on the nozzle wall separates the flow
field into the upstream region which is fixed by the given subsonic and tran-
sonic contours, and the downstream region which will be affected by variations
in the nozzle contour. The nozzle ends at point C, and the left running Mach
line BC passing through point C intersects the right running Mach line AB at
point B,

The thrust developed by the portion of the nozzle between A and C is
determined by integrating the pressure forces acting on the nozzle wall AC.
The flow field beyond the left running Mach line BC will have no effect on
the nozzle thrust, and need not be considered in the analysis. The problem
then becomes the determination of the optimized nozzle contour, y = n(x),
which develops maximum thrust for thevgiven subsonic and transonic contours

subject to some restrictions on the allowable supersonic contour, for example,

fixed nozzle length, fixed nozzle surface area, etc. The optimum nozzle



contour is obtained by applying the techniques of the calculus of varia-
tions to the flow field in region ABC.

The thrust term to be maximized along AC is given by

F

C
. Thrust _ J (P-P_) nn' dx ‘ (11)

2n A

where y = n(x) is the desired optimum contour. The engineering aspect
of the problem enters through the specification of a general isoperi-
metric constraint G(n,n',P) which is imposed on the nozzle contour by
forcing the integral of G(n,n',P) along AC to be constant. The general

isoperimetric constraint is specified by the following equation.

S = JC G(nn',P) dx = Constant (12)
A

The function G can be specified at the discretion of the nozzle designer.

Examples of constant length, constant arc length, constant surface area,

and constant weight are presented in Section II. E. The line AC along

which the thrust is to be maximized is forced to be a gas streamline by

including the equation of a streamline, multiplied by np to simplify

future manipulations, as a constraint.
no(un' - v) =0 on AC (13)

In order to insure that the solution obtained is physically possible,
the equations which govern the flow of a chemically reacting gas are in-

troduced into the optimization problem as constraints by means of Lagrange



multipliers. Equations (1) through (4) can be represented symbolically

by the differential operator Lj’
Lj(x’ y, u, v, P, p, Ck) =0 (G =1,...,4) (14)

Equation (5) can be represented symbolically by the differential oper-

ator M..
1
Mi(x: Y, u, v, P, p, Ck) =0 i=1,...,n) (15)

The thrust is to be maximized by allowing arbitrary variations in

the following parameters.

u(x,y)  P(xy) n(x)  C(x) i=1...,0

v(x,y) p(x,y) X (16)

!

rewa
The extemmwl problem is formulated in terms of the following expression,

which is to be held stationary.

C 4
F+CS+ J C,(x)mp (un'-v) dx + I I ] h.(x,y) L, dxdy +
A ABC j=1 J

n

+ ” I gi(x,y) M, dxdy (17
ABC i=1

where Cl” CZ’ hj’ and g; are Lagrange multipliers. The above expression

is required to be stationary for arbitrary variations in the parameters

listed in Eq. (16). When expanded, Eq. (17) has the following form.
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C
J { (P-Po)nn' + ClG(n,n',P) + CZ(X)np(Un°-V) } dx +
A

+ J IABC{bl(X.y) [yew), + (o) ] +

+ h,y(x,y) [puu, + pvu, + P ] + hg(x,y) [ouv, + pvv, + Py] +

: n
2 2
+ h4(x,y) [qu + va -au - a pr - izl wi(P,p,Ck)] +

n
+ ,21 g; (x,y) [pu(Cy) + DV(Ci)y - oi(P,o,Ck)]j} dxdy (18)
i=

In order to reduce the algebraic complexity of the analysis, varia-
tions will not be taken in all of the parameters simultaneously. Varia-

tions in u, v, P, p, and C, are taken in Section II.C., and variations

k
in the nozzle contour n(x) and end point Xc are taken in Section II.D.
This procedure is permissible since all the variations are independent
of each other. The results obtained after taking all of the variations

are summarized in Section II.F.

C. Variations of Gas Properties

A detailed development of the results presented in this section is
presented in Appendix B. Taking variations of u, v, P, p, and Ck in Eq.

(18) results in the following expression.
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c
f {nn'ép + C,GpéP + Conp(n'éu - §v)} dx +
A

+ h [3— 5(you) + 2’—~<S(ypv)] .
IJABC{ 1 | 3x 3y

)
+ h2 [G(puux) + G(pvuy) * 3% GP] +

+

)
h3 [é(puvx) + d(pvvy) + 3y GP] +

v 2 2
h4 [G(qu) + 6(*Py) - §(a upx) - &(a pr) -

+

Zw 5P - zlwipsp - ,Z X e }cc ]

i=1 =

+
I e~s
o

[
——
©
c
~
(@]
H.
~—
b
——
+
O
——
©
<
~
@]
s
et
—

i=1

n
Zlg 0;poP - iz giaipdp} dxdy = 0 (19)

The following expansion of the terms in the second line of Eq. (19) is

applicable in region ABC.

8 (ypu) = ypSu + yuép (20)

8(yev) = ypbsv + yvép (21)

The frozen speed of sound appearing in Eq. (19) is given by

2 - YRT = C_RT/C. = Ce®
a =Y = - -
P v C\)’/O

(22)

)
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Taking variations of Eq. (22) yields
a.6C. + 2-6P - 2 ¢p (23)
where

a. = é— (C

i %G (24)

pi ~ YCy3)

Substituting Eqs. (20), (21) and (23) into Eq. (19), and applying
Green's theorem in the plane to the terms under the integral over region
ABC, the following result is obtained.

c )

~{nn'6P + C,G, 8P + C_,np(n'Su - §8v) dx +
A 1P 2

c (C B
+ - J - J {:h ypdv + h yvép + hpvéu + h,pvév +
JA B Aj}' 1 1 2 3

n
2
+ hg8P + h,véP - h,a"vép + pv izlgiéq;} dx -

4
IC IC IB
- - - h.ypsu + h_yudp + h,pudu + h_pulv +
A Jg Ia 1 1 2 3
2 n
+ h,8P + h,usP - h,a‘usp + pu izlgiaci dy +

+ -yp(h,)_ + hypu - (h,pu) - (h,pv) + hpv_+
IIABC{[ 17 x 27 7x 27 x 2"y 3 'x

n
2
+ h4Px - h4a px +p i§1gi(ci)x'] Su +

+ [-yw(hl)y + thuy + h3ovy - (hgpu), - (h3OV)y + (25)
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n

2 /

+hP -h.a + . (C; Sv + 25
4Py - hgatey, +0 iZlgl( 1)),] (25)

+

2 .
[ - h4 %_ (upx * vpy) - (hZ)x - (hS)y - (h4u)x - (h4v)y )

II-M=

n
- by izl“’ip - gioip} 8P+

i=1

+

[ —yu(hl)x - yv(hl)y + hzuux + hzvuy + h3uvx + h3vvy +

2 2 2 n 1 1
+a"(hu) +a (h4v)y + hjua izlai(ci)x + 5P AL

+

2f % 1 1 th
h4va {jizlaicci)y *F Py - E-py:} +u iZlgi(Ci)x +

n n
+v ) g; (C;), - hy 'leip -
1=

)
g.0. ] Sp +
is1 (o1 iip

1

n
2
igl [-h4a as(up + pr) - (ggpu), - (gipV)y -

+

n n
- h () - g (o,) ] §C. dxdy = 0
o 5, Late é:} —”//

Consider the line integrals appearing in Eq. (25). Note that along AC,

where y = n(x),

C C
J £(y)dy = J £ [n(x)] n' dx (26)
A A

Substituting Eq. (26) into Eq. (25), and noting that the line integrals

must equal zero independently of the surface integrals for arbitrary
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variations in the gas properties, the following equations are obtained.
C
' - ' _ '
IA {[Cznpn + hov - hypun h,npn ] Su +
- - L}
+ Cznp + hspv + hlnp hspun ] 6v +
' - [ '
+ [nn' + h3 + h4v hzn h4un + CIGP] SP +

2 2, '
+ [-h4a v + hlnv + h4a un' - hlnun ] dp

n
+ 1 [ovg; - oun'g,] eci} dx = 0 27)
i=1

C (B
J + J {[thvdx - thudy - hlypdy] su +
B A

+

[hspvdx - hspudy + hlypdx] sv +

+ [hsdx - hzdy + h4vdx - h4udy] SP +
2 2
+ [-h4a vdx + hlyvdx + h4a udy - hlyudy] Sp +
n
+ z [pvgidx - pugidy] <SCi =0 (28)
i=1

Since the line integral in Eq. (27) must equal zero for arbitrary

values of 8u, 8v, 8P, 8p, and GCi, the coefficients of these variations
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must equal zero identically, resulting in the following relationships

which are valid along the nozzle wall AC.

(29)

uh3 - vh2 + vn + quC1 =0 (30)

Since no variations in gas properties are allowed in the kernel,
the variations in gas properties along right running characteristic AB
will automatically be zero. Thus, the line integral along AB will be
zero and no new conditions result along that line. However, the variations
along the exit control characteristic BC are arbitrary. This requires
that the coefficients of the variations in Eq. (28) be equal to zero,
resulting in the following relationships which apply along the exit

control characteristic BC.

yy'hy + (wy' - v)h, =0 (31)

yh; - (uy' - v)hy =0 (32)
2

yh; - ah, =0 (33)

g = 0 i1=1, ..., n) (34)

Returning to the surface integral appearing in Eq. (25), the varia-
tions in gas properties must be arbitrary over the region of integration.

Hence, the coefficients of the variations must be identically zero. After
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some manipulation, including the substitution of the original system
equations, Eqs. (1) through (4), the following set of partial differential

equations for determining the Lagrange multipliers in region ABC is

obtained.
chou - hov -1 (P - a%.) +y). + u(h)_ +
2°x 3I'x p h4 X X 17x 27x
n
+ v(hy), - iZlgi(ci)x = K (35)

1 2
—hzuy - h,v - 5-h4 (Py - a py) + y(hl)y + u(hs)x +

+

';f

v(hS)y T,

g;(C;), = K, (36)
1

1

2
a
h4ux * h4vy * h4 P (UOX * pr) * (hZ)x * (h3)y *

+ u(h4)x + v(h4)y = K3 (37)

1 1 2 2 _
5-h4 Px +-; h4 Py + yu(hl)x + yv(hl)y + a (hz)x + a (hS)x = K4 (38)

2 _ .
h4a ai(qu + pr) + Ou(gi)x + DV(gl)y = Jl i=1, .., n) (39)

= y

Ky =h, 3 (40)
= y

K2 = h3 y (41)
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n n
Kg=-h, I ¥p- 1895 (42)
i=1 i=1
a2 n n 2 n 2
Ky=hy 5= T wg-hy ] @p+u) - ] gi@togp +o;)) +
i=1 i=1 i=1
n
1 2
+ 5--2 (hya%a, + g;) o, (43)
i=1
oV n n
Ji =8 — - hy kzlcwk)ci - kzlgk(ok)ci (i=1,..,n) (44)

Equations (1) through (5), together with Eqs. (35) through (39), con-
stitute a system of (8+2n) partial differential equations for determining
the (8+2n) variables u, v, P, o, Ci’ hl’ h2, h3’ h4 and g; - As shown in
Appendix E, these (8+2n) equations form a system of quasi-linear, non-
homogeneous, first order partial differential equations of the hyperbolic
type. Thus, this system of equations can be replaced by an equivalent
system of characteristic and compatibility equations, which are total

differential equations of the first order. The following characteristic

system was obtained. Along gas streamlines,

dy_v
dx u (45)
pudu + pvdv + dP = 0 (46)
n
2 1
dP - a®dp = = izlwi dx (47)

pudCi = cidx (i=1,.., n) (48)
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-hzdu - hsdv + ydh, + udh2 + vdh3 =

1

n

n
~ 1 1
= Kldx + szy +-EE h4 .2 widx + ou .Z g0 dx (49)
i=1 i=1
2
(vhe - uh,)dv + = h, dP - h, 2% (y-1) dp + yudh, - ua’dh, =
2 3 p 2 4 o 1 4
_ 2 v 2
= [-h4a y " a’kK, + K4] dx (50)
2 s =
udgi = Jidx - h4a uaidp (i=1,.., n) (51)
Along gas Mach lines,
dy .
3% - tan (6%a) (52)
n
az(vdu - udv) * l-azcota dP = (udy - vdx) [ a2 Y. 1 Z Y. } (53)
P YooPu=p?

h.du + hodv + + h, (dP - adp) +
3 p 4 i

n
Zlgidci - ydh, +

+ tana (vdh2 - udhs) = % tana (szx - Kldy) 3

H

n
1 1
2 tana (udy - vdx) [ K4 + ;-h4 izlwi ] (54)

where 6 is the flow angle and o is the Mach angle. In Eqs. (52), (53),

and (54), the upper signs refer to left running Mach lines and the lower
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signs to right running Mach lines.

The terms K K4 and Ji defined in Eqs. (42), (43) and (44) involve

3)
complicated derivatives of the functions wi and 5. After some lengthy
manipulation, these terms can be expressed in terms of the fundamental

thermodynamic properties of the system in the following form (See Appendix F).

CPT n T n
Ky = -hy 5= 1205 -5 1 (hyd; +g;) W,
i=1 i=1
v! v"!
N dl(fr n foC jr dKrr n JpoC jr
< L O - e T - " (55)
T= j=11 7] j=1 J
1'2’ az’z’ 1'2‘
Ky == Jgio, +hy 3= Ty == T (hye +g) W x
4 P o1 4 P j=1 1 CE 47i i i

[ Z dK } n (pc.) jr
! n |—1 (56)
Tyt a j=1 | ";

n N 1 RiT dKey
- — Ve ——
Zl(h4¢k * gW Z Ok Y [ci KerVir = R T ] x

n pC jr R.T dK n pC. jr
N R
j=1 j i rr ir R =1 ?
J

(i=1,..,n) (57)
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In summary, the characteristic system defined by Eqs. (45) through
(57) can be employed to evaluate the gasdynamic properties and the Lagrange
multipliers throughout region ABC.

D. Variation in Nozzle Contour and End Point

Variations of the nozzle contour n(x) and end point XC are discussed
in detail in Appendix A, The limits of integration of the double integrals
over region ABC in Eq. (18) are functions of the boundaries of these regions.
Hence, arbitrary variations in these limits must be allowed. However, the
integrands of these integrals are identically zero over the entire region
of interest, including the boundaries of the region. Thus, the variations
arising from the limits of integration of the double integrals can be arbi-
trary without introducing any new conditions into the problem.

The contour n(x) and end point Xc also appear in the line integral
along the nozzle wall AC in Eq. (18). The contour n enters both directly

as a factor and also as the argument of all gas properties. For example,
u(x,y) = u[x,n(x)] on AC (58)

Variations can be taken in all gas properties due to variations in n at
fixed x. These variations are independent of those taken in the previous

section which were taken at fixed x and y. Thus
=9 =
su = 5= { ulx,n()] } &n = u én (59)

Since the nozzle end point Xc appears in the limits of integration

in Eq. (18), a variation in Xc must also be taken. Taking the variation
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in the limit of integration at point C in Eq. (18), and allowing 6Xc to
be arbitrary, gives
' -
Ne "¢ (Pc po)

C. = - : (60)
1 G(nc, Nes PC)

Taking the variation of n in the line integral in Eq. (18) yields

the following result.

C
] - 0 0 -
fA {:l:nn Py « (P-P)n' ¢ clcn + clcppy + Cz{n (npu)y (TIDV)),}} én +

% [ (P—Po)n + ClGn' + Cz(npu) j Gn':} dx = 0 (61)
Substituting the continuity equation, Eq. (1), into Eq. (61), and inte-
grating by parts the coefficient of én', gives the following equation.

X
Cc

[kP-Po)n + chn' + 91(”9“)] én

A

C
dP d
+ IA [nn"Py - N Hi‘ + C].Gn + C].GPPY + CZ E; (npu) -

d d
- ¢ o 6,0 - 3k (Cznpu)] ény dx = 0 (62)

For arbitrary ch» the first term in Eq. (62) must be zero. Eliminating

C1 from this term by introducing Eq. (60), and recalling from Eq. (29)

that h1 = C, on the wall AC, gives the following result for hl(xc) and

2
CZ(xc)°
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(P_-P_) n 6,1 (X)
hl(xc) = CZ(XC) = - —;I-— 1 - —(-;'D—(:)———- (63)

Rearranging the line integral in Eq. (62) and introducing the system

momentum equations, Eqs. (2) and (3), gives, for arbitrary 6n,
- '
dc (Pc po)ncnc

2 du 1 [d av
& & Teg o & G0 v oy - ) o0

Integrating Eq. (64), using Eq. (63) to evaluate the constant of integra-

tion, and recalling from Eq. (29) that h1 = C2 on AC, the following ex-

pression for hl[x,n(x)] along AC is obtained.

(P.-Py) né Gn'(xc)
hylan] = @y - S5 {1 gyt | -

cc

PePolnene e 1 3G, dv 3G
- G(XC) fx npu [_d-; ( ') + pu (ap) dX (ﬁ)} dx (65)

Thus the Lagrange multiplier hl(x,y) can be evaluated along AC,
giving a boundary condition, in terms of the gasdynamic properties and
the general isoperimetric constraint G(n,n', P), for the determination
of the Lagrange multipliers throughout the flow field ABC. Examples
of the general isoperimetric constraint are presented in the next section,

E. Examples of the General Isoperimetric Constraint

The general isoperimetric constraint G(n,n',P) was defined in Eq.
(12). The function G(n,n',P) can be chosen at the discretion of the
nozzle designer. Results for constant length, constant surface area,

constant arc length, and constant nozzle weight are presented in this
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section,

For constant nozzle length, Eq. (12) becomes

C
S = Axial Length = I dx = Constant (66)
A

Hence, the general isoperimetric constraint is given by

G(n,n',P) =1 (67)

Substituting Eq. (67) into Eq. (65) gives the following result for h1

along AC.
(P.-P)
hl[x,n(x)] = (u = uC) = p u (68)
cc
For constant nozzle surface area, Eq. (12) becomes
Surface Area ¢
S = o = J (1 + n'2) n dx = Constant (69)
A
Hence, the general isoperimetric constraint is given by
G(n,n",P) = (1 +n'?) n (70)

Substituting Eq. (70) into Eq. (65) gives the following result for hl

for a constant surface area nozzle.

(P -P ) cos? 8
hy[x,n(0)] = (@ - u) - — €.

u
pC (o

X
. c 1 d . :
+ (PC-PO) sin@_ Jx FYa [sec b - 3% (n sin 6)] dx (71)
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For constant nozzle wall arc length, a compromise between constant

length and constant surface area, Eq. (12) becomes

C +
S = Arc Length = J (1 + n'2) dx = Constant (72)
A

In this case, the general isoperimetric constraint becomes

G(n,n',P) = (1 + n'?) (73)

For this case,

hy[x,n(0] = (u-u) - -

P CuC
xc 1 d
- (Pc-Po)ncsmec Ix U [&; (51n6)] dx (74)

As a final example of the general isoperimetric constraint, consider
the case where the weight of the nozzle is assumed to be governed solely
by the mechanical stresses in the wall material. If the nozzle weight
is held constant, and the wall stress is assumed to be constant, the

following expression is obtained for the constraint integral.

S = —— =

GWXden c
4'rrpw J

(P -P) n?(1 + n'2) dx = Constant (75)
A

The general isoperimetric constraint for this case is

G(n,n",P) = (P - P)n?(1 + n'?) (76)
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Substituting Eq. (76) into Eq. (65) gives the following result for hlo

(P, - P) cos2ec sin6_
hl[x,n(x)] = (u - uC) - - X

u
pC c r.‘C

x jzc ﬁ%ﬁ{:%; [(P-Po)nzsine] + pun?sec® %% - 2(P-Po)nsece:} dx (77)
As discussed by Guderley and Armitage,18 Eq. (75) does not represent a
realistic engineering constraint since the wall pressures may become
very low, resulting in very thin nozzle walls having very large surface
areas. This problem can be overcome by combining this constraint with
any of the other three constraints with a penalty coefficient as dis-
cussed by Guderley and Armitageu18

It is obvious that many more engineering constraints can be postu-
lated, and the results used to evaluate the Lagrange multiplier h1 along
the nozzle wall. The only other effect on the results developed herein
is the inclusion of the term uGPC1 in Eq. (30). For constraints inde-
pendent of pressure, this term will always be zero.

F. Summary of the Resulting Equations

In this section, the results of the optimization analysis are
summarized. These results are a set of characteristic and compatibility
equations for the gasdynamic properties and the Lagrange multipliers
valid in region ABC, and a set of boundary conditions for these variables
on the boundaries of region ABC. The geometry is illustrated in Fig 1.

Along the boundary AB: The gasdynamic properties u, v, P, p, and Ci are

known from the characteristics solution of the kernel.
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Along the boundary AC: The following boundary conditions were obtained

along the nozzle wall.

s

v
=5 (78)

(P.-P.) nl G,y (X))

hy[x,n(x)] = (u-u)) - —3:;:—- 1 -'—-—gTy:T-

X

(P-PPnne ch 1 [:d

3G oG, dv 3G
Gx) . o ldx Cg;.) +ou Gp) I - (3;9] dx (79)

un n' (P_-P)

cc c o _
uh3 - vh2 + vn - G(nc,né. Pc) GP =0 (80)

where G(n,n',P) is the general isoperimetric constraint to be specified -
by the nozzle designer.

Along the boundary BC: The following boundary conditions were obtained

along the exit control characteristic BC.

yy'hy + (wy' - v)h, = 0 (81)
yh1 - (uy' - v)h3 =0 (82)
h, - a’h, = 0 (83)
M 4

g; =0 i=(,..,n) (84)

Along gas streamlines: The following compatibility equations were found

along gas streamlines in region ABC.
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pudu

dP -

pudCi
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{vh

udgi

Along Mach lines:
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vy
u
+ pvdv + dP =
p
2 1
a dx = +-a-2 ¥, dx

= oidx i=1,..,n

+ vdh

hsdv + ydh1 + udh2

=K1dx+x2dy-p—uh4zwdx+—2godx

azu (y-1)dp + yudh, - uazdh

2

1 1
uhs)dv + S-h dP - B-h4

2 .
Jidx - h4a uaidp (i=1,..,n)

along Mach lines in region ABC.

dy _
dx ~

tan (8 * a)

v

2
a (vdu - udv) ¢ a cgta dP = (udy - Aldx) —_— 4 —z q;

1 4~

(85)

(86)

(87)

(88)

(89)

(90)

(1)

The following compatibility equations were obtained

(92)

(93)
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n
Z gidCi - ydh1 +

hodu + h.dv + 2 h, (dP - a’dp) +
p 4 i=1

2 3

+1

tan a(vdh., - udhs) = % tana(szx--Kldy) %

2

[

v, (94)

It ~13

1 1
22 tana (udy - vdx) (K4 + E-h4

i=1

In Eqs. (92), (93), and (94), the upper signs refer to left running

Mach lines and the lower signs to right running Mach lines.
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III. APPLICATION OF THE RESULTS

The application of the results of the present optimization analysis
is quite involved. A complete set of characteristic and compatibility
equations for the gasdynamic properties and the Lagrange multipliers
was obtained. The characteristics are the gas streamlines and the gas
Mach lines. The characteristic and compatibility equations for deter-
mining the gas properties and the Lagrange multipliers are Eqs. (85)
through (94).

Initial conditions for the gasdynamic properties can be determined
from a transonic analysis as discussed by Der22 and Craig.23 Initial
conditions for the Lagrange multipliers h1 through h4 and g; at point C
can be determined from Eqs. (79), (80), (81), (83), and (84). Values
of these multipliers along AC can be evaluated by employing Eqs. (79),
(80), (89), (90), and (91), starting with the known values at point C.
As seen from Eq. (84), the Lagrange multipliers g; are all zero along
BC. Note that Eq. (82) relating h1 and h3 along the exit control
characteristic BC is not needed in the determination of the initial
conditions. This equation can be employed as a check to determine
whether or not a given contour is the desired optimum contour.

A method for the direct application of the results of this analysis
for the determination of optimum thrust nozzle contours is not presented.
However, the results can be applied in a straightforward manner to de-

termine if a given nozzle contour is the desired optimum contour. For
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a given contour, the entire gasdynamic flow field can be determined by
applying the method of characteristics. The initial conditions for the
Lagrange multipliers along the wall AC and along the exit characteristic
BC can be determined as discussed above. The remainder of the analysis
involves the construction of a characteristic network as illustrated in
Fig. 2,

Starting near the nozzle exit at point 1, the initial data known
along the contour AC can be employed, along with Eq. (94) which is
valid along the two Mach lines intersecting at point 2, and Eqs. (81)
and (83) which are valid along Mach line BC, to determine the Lagrange
multipliers h, through h, at point 2. The values of h, through h4 and
g; can be found at point 3 by applying Eq. (94) along the two Mach
lines intersecting at point 3 and Eqs. (89), (90), and (91) along the
gas streamline from point 2 to 3. Point 4 can be found in the same
manner as point 2 was found. By continuing this step by step procedure
the Lagrange multipliers h1 through h4 and g; can be determined through-
out region ABC.

During the above procedure, Eq. (82) was not employed. This re-
lationship can thus be utilized as a means of checking whether or not
the selected contour is indeed the optimum contour. Thus, along BC,

the error parameter E can be evaluated.
E = yh1 - (uy' - v)h3 (95)

If E is everywhere zero along BC, then the contour satisfies all the

requirements of the variational problem and is indeed the optimum contour.
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Otherwise, the contour must be altered by a relaxation technique to
approach the desired optimum contour.

Guderley and Armitage18 present a relaxation technique which was
applied to their results, which are similar to the present results.
Although the present problem is more involved, a similar relaxation
technique can be developed to permit the determination of optimum

thrust nozzle contours for chemically reacting gas flows.
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IV. CONCLUSIONS

An analysis was presented for the optimization of nozzle contours
to give maximum thrust for chemically reacting flows. The solution is
subject to the constraints of fixed subsonic and transonic nozzle
geometry, and a general isoperimetric constraint imposed along the wall
in the supersonic flow regime, The solution was obtained in the form
of a set of partial differential equations for the Lagrange multipliers
of the optimization problem. A complete set of characteristic and com-
patibility equations for the gasdynamic properties and the Lagrange
multipliers was obtained. Boundary conditions for the Lagrange multi-
pliers were obtained from the optimization analysis in the form of a
set of algebraic equations valid along the boundaries of the flow field.
A method was presented for employing the results to determine whether
or not a given nozzle contour is actually an optimum contour. By em-
ploying a relaxation technique in conjunction with the aforementioned
method, a procedure can be developed with which the desired optimum
contour can be obtained. The application of such a technique would
permit the rocket nozzle designer to obtain the best possible perform-

ance subject to the constraints of each individual application.
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V. NOMENCLATURE

English Symbols

a frozen speed of sound

a; function of specific heats defined by Eq. (24)

Ci species mass fraction

Cp constant pressure specific heat

Cpi constant pressure specific heat of species i

Cv constant volume specific heat

vi constant volume specific heat of species i

C1 Lagrange multiplier

C2 Lagrange multiplier

E error parameter defined by Eq. (95)

F thrust parameter to be maximized, defined by Eq. (11)
g; Lagrange multipliers (i=1,...,n)

G general isoperimetric constraint defined by Eq. (12)
hi enthalpy of species i

hg heat of formation of species i

hj Lagrange multipliers (j=1,...,4)

Ji nonhomogeneous terms in Eqs. (39)

Kj nonhomogeneous terms in Eqs. (35) through (38)

Kfr forward reaction rate constant of reaction r

reverse reaction rate constant of reaction r
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partial differential equation operator defined by Eq. (14)
partial differential equation operator defined by Eq. (15)
number of chemical species i

number of chemical reactions T

pressure

ambient pressure

gas constant

gas constant of species i

general isoperimetric constraint integral defined by Eq. (12)
time

temperature

x-direction velocity component

y-direction velocity component

molecular weight

molecular weight of species i

coordinate along nozzle axis

x coordinate of nozzle exit point C

coordinate normal to nozzle axis

Greek Symbols

a
y

§()
n(x)

ir

Mach angle, a = sinul(l/M)
specific heat ratio

first variation of a quantity
optimized nozzle contour

flow angle, 6 = tan-l(v/u)

stoichiometric coefficients of reactants
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vgr stoichiometric coefficients of products

p density

Py density of nozzle wall material

oy chemical species source function

o, stress of nozzle wall material

wi function of thermodynamic properties defined by Eq. (7)

Subscripts

c property evaluated at nozzle exit point C
i index denoting species i (i=1,...,n)

j index denoting species j (j=1,...,n)

k index denoting species k (k=1,...,n)

T index denoting reaction r (r=1,...,N)
Other

%; total derivative with respect to x

g;- partial derivative with respect to x

%;- partial derivative with respect to y

( )x partial derivative with respect to x

( )y partial derivative with respect to y

( )¢ partial derivative with respect to ¢ (¢=n,n', or P)

%% slope of a line in x-y plane
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APPENDIX A

GOVERNING EQUATIONS FOR CHEMICALLY REACTING FLOWS

The governing equations for the axisymmetric flow of a chemically
feacting gas in the absence of transport phenomena and body forces are
given in references 21, 22 and 23. These equations are the usual equations
for conservation of mass, momentum, and energy, the thermal equation of
state, and the caloric equation of state. Generally, these equations are
presented in the natural coordinate system consisting of an axis along a
streamline and an axis normal to the streamline. In that coordinate sys-
tem, (2+n) of the (4+n) governing partial differential equations reduce
to total differential equations along a streamline, thus leaving only two
partial differential equations to be solved by the method of characteristics.
In the present optimization analysis, the aforementioned simplification is
not advantageous, since the governing equations must be solved simultane-
ously with the set of partial differential equations governing the Lagrange
multipliers of the optimization problem. The form of the governing equa-
tions employed in the present analysis is developed in the following dis-
cussion.

From reference (22), the following equations are obtained.

£ 4 pdivV=0 (A-1)
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o %% +grad P =0 (A-2)
Dh DP
[o] -D—t— - -D—t- =0 (A'S)
DC; .
o} ﬁt—1= o’i (1=1,. . ,n) (A—4)
n
P=pT] CR, (A-5)
i=1
n
h= ] Chy (A-6)
i=1
T (o]
h, = JToCPiT + h (i=1,..,n) (A-7)

When expanded into a cylindrical coordinate system, Eqs. (A-1) through
(A-4) result in (4+n) partial differential equations for the (5+n) vari-
ables u, v, P, p, h and Ci' In order to apply the method of characteristics
to this system, the enthalpy h appearing in Eq. (A-3) will be eliminated
by using Eqs. (A-5), (A-6), and (A-7). Consider the term hx arising from
Eq. (A-3).

h =

X .
1

I e~
e~

hi(Cidy

. . c;(h), (A-8)

1

From Eq. (A-7), assuming constant specific heats,

(hidy = CpiTx (A-9)
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From Eq. (A-5),

n
) R, (C,), , (A-10)

Substituting Eqs. (A-9) and (A-10) into Eq. (A-8) gives the following

result.
A PR I
b= Py - o Px* 121 (hi "R ) CH (A-11)
In a similar manner, h_ is given by
CT EBI n C 'I‘Ri
hy = - Py - =y + Z (hy - -P——R ) (), (A-12)

Substituting Eqs. (A-11) and (A-12) into the energy equation, Eq. (A-3),

gives the following result.

CT

2

C.T n . .
P D 1 DP
£ -..;L_‘l... Z (hi__LR._l)_.l_-_._=o (A-13)

t

=B

Multiplying Eq. (A-13) by (y-1)p yields

n C TRi DCi
DRI T (A1)
i=

DP 2 Dp
Dt Dt

Substituting the species continuity equation, Eq. (A-4), into Eq. (A-14)

yields
n
DP 2 Dp _ -
-ﬁ?-a -D_E-Zwi (A-15)

i=1
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where the function wi is defined as follows.

n n
Y 9. = ) |YR.T - (y-Dh,| o, _ (A-16)
= 1 i=1 1 1 1

i=1

In summary, the governing differential equations for the flow of a
chemically reacting gas are Eqs. (A-1), (A-2), (A-15), and (A-4). When
expanded into a cylindrical coordinate system, these equations have the

following form.

pu + pvy +u +vp = - 3% (A-17)

puu_ + pvuy + Px =0 (A-18)

uv_ + pvv_ + P =0 A-19

puv, + pvvy y ( )
2 2 1

qu + va -au -a vpy = izlwi (A-20)

pu(Ci)x + pv(Ci)y =0, (i=1,..,n) (A-21)
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APPENDIX B

ANALYSIS OF VARIATIONS OF GAS PROPERTIES

In this section, variations will be taken in the gas properties
u(x,y), v(x,y), P(x,y), p(x,y) and Ci(x,y) (i=1,..,n), along the contour
n(x) and throughout the flow field ABC. In order to take variations in
properties which appear in differential form, the following relationship

will be employed.
§(£) = == (8£) (B-1)
b ¢ ax

Employing the above relationship and taking variations of all gas pro-

perties in Eq. (18) yields the following result,

C
] [nn'GP + ClGPGP + Cz(x)np(n'Gu - Gv)]dx +
A

3 3
+ J IABC {hl(x,y) [a—x S(ypu) + 52 5(YDV)] +

+ hy(x,y) [«s(puux) + 8(ovu)) + = cp] +

I 3
+ ha(x,y) |8(puv,)) + G(pvvy) * 3y GP] +

n
+ h4(x,y) té(qu) + G(VPy) - G(azupx) - G(azvpy) - izlcwi] +

n [~ .
+_): g; (x,y) |6{ou(C;) } + 5{°"(Ci)y} - Goi]} dxdy = 0 (B-2)

i=1
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From here on, the terms C2(x)p hl(x,y), etc, will be denoted by C2, hl’
etc. in order to simplify the appearance of the equations.

The surface integral over the region ABC can be simplified by apply-
ing Green's theorem for the plane which can be stated as follows. If
M(x,y), N(x,y), 3aM/3y, and aN/sx are continuous, single-valued functions

over a closed region R bounded by the closed curve C, then

f
(N3 gxdy = | (Hdx + Ndy) (B-3)
Jo Yax T 3y

R C

The double integral is taken over the given region R, and the curve C

is described in a direction such that the region R is to the left when
traveling in a positive direction around the curve. In order to simplify
the application of Green's theorem to Eq. (B-2), the integral over the
region ABC, in Eq. (B-2) can be considered to be represented by the follow-

ing expression.

(G#H) + (J+K+P) + (LsM+Q, + (R+S+T+U+V) + (X+Y+Z) (B-4)
where
-
G = I f h. == 8(you)dxdy (B-5)
ABC 1 3x

and the remaining terms follow in sequence from Eq. (B-2). Green's
theorem can then be applied to each of the terms in Eq. (B-4) as follows.

Consider the terms G and H.
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G = J LM;}‘E% 8 (you) dxdy (B-6)
]
G = J JABC{SE [h 8(ypu)] - 8(yeu) (hl)x}dxdy (B-7)
H = I f ﬁ} 33 § (ypv)dxdy (B-8)
AB
9
H = I IABC{E; [h,8Cyov)] - &(yeV) (hl)y}dxdy (B-9)

In Eqs. (B-7) and (B-9), let

=
[l

= - h8(yev) (B-10)

z
n

h16(ypu) (B-11)
Adding Eqs. (B-7) and (B-9), and applying Green's theorem gives
B (C (A
(G+#H) = I + J + J [-hls(ypv)dx + hld(ypu)df] +
A ‘B ‘cC
+ f f {- styou)(h)), - 8(yov) (h)) faxdy (B-12)
ABC '
Consider the terms J and K.
J = J J h,é(puu )dxdy (B-13)
ABC ‘

d
J = J JABC{hZG(pu)ux + hypu == su}dxdy (B-14)
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Note that
-2 (h.pudu) = h.pu —= &u + su(h pu)
3x 2 2 39X 2 X

Substituting Eq. (B-15) into Eq. (B-14) gives
J = J J {hzs(pu)ux + (hypudu) - Bu(thu)x}dxdy
ABC
Performing analogous operations on the term K gives

K = J JABC{hZG(pv)uy + (thvsu)y - Gu(thv)y}dxdy

In Eqs. (B-16) and (B-17), let

=
'

= - thvéu

z
]

thuéu

Adding Eqs. (B-16) and (B-17), and applying Green's theorem gives

B o A .
(J+K) = J + J + J [— thv6udx + thu6udy] +
A B C

(B-15)

(B-16)

(B-17)

(B-18)

(B-19)

’ J JAB(:{hzé(w)ux + hydleviy, - Sufhypu)y - GUG\ZcV)Y}dxdy (B-20)

Treating L and M in the same manner in which J and K were modified

results in the following expression.
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B (C (A
(L+M) = j + J + j [} h,ovévdx + hspuévd%] +
' j IABC{h:"‘S(pu)Vx * hgS(ev)vy - Sv(hgou), - 6"(h;:,ov))'}dxdy (B-21)

Performing similar operations on P and Q yields

B C A
(P+Q) =¢| + J + J [} h6Pdx + hzéPd%] +
‘A ‘B ‘C
[
* | JABC{- 8P(h,) - 6P(h3)y}dxdy (B-22)

Combining R and S in the same manner gives

B (C (A
(R+S) = + |+ - h,véPdx + h uéPdy| +
C 4 4

+ I IABC{h4supx + h46va - 6P(hyu) - GP(h4v)y}dxdy (B-23)

Performing similar operations on T and U results in

B C A 2 2
(T+U) = J + J + J [é4a vépdx - h4a uapdx] +
A Cc
2 2 2
+ J JABC{- h,8(a u)px - h,é(a v)py + Gp(h4a u)x +

. sp(h4a2v)y}dxdy (B-24)

Combining X and Y in the same manner gives
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C
(X+Y) = } { - 8 pv6C dx + g; pusC. dy] +

+ f J Z g (C;),8(pu) + g;(C;) 8(oV) - 8C; (g;ou)

ABC ] i=1
- aci(gipv)Q]j} dxdy (B-25)

The terms V and Z are non-homogeneous terms not involving partial

w

derivatives. At this point, these terms will be treated in functional

form without specifying the exact form of the function. Thus,

it t~10

V= I I {- h, Gwi}dxdy (B-26)
ABC i=1

The term wi is assumed to be a function of P, p, and Ck only. Thus,

n n
V= I JABC h4 - 6P izlwip - 8p izlwip -
n n
) izl [kZIWk)Ci]GCi dxdy (B-27)

In a similar manner, the following result is obtained for Z.

n
Z= J J - &P Z g8i0;p - 80 1 gio -
ABC i=1 j=1 1 1P

-

i

n
g, (0,) ]GC. dxdy (B-28)
1 [ kzl k*k ;1

The term 632 appears in Eq. (B-24). This term can be eliminated
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by considering the equation for the frozen speed of sound in a perfect gas.

Cvp
a2 a2 22 42
sa = &= cp - 8C, P - b (B-29)
P v
n
C_ = c_.C (B-30)
P 4y P21
n
8C_= ) C_.8C, (B-31)
P i=1 P1 1
n
c, = .Z C,i% (B-32)
i=1
n
6C_ = ) C_.8C. (B-33)
v i=1 vl 1

Substituting Eqs. (B-31) and (B-33) into Eq. (B-29) gives the following

result for Gaz.

aiGCi (B-34)

where

a, =-é- € ; - ¥C,;) (B-35)

Equation (B-24) also contains partial derivatives of a2 with respect

to x and y. These derivatives can be obtained in the same manner as Eq.
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(B-34) was developed. Thus,

2 a2 a2 2 ¢
= F Px o *2 iZlai(ci)x (B-36)
a2=i2-p -Ez-p +32§a(c) (B-37)
y Py o Yy jop 11y

Note that in region ABC
8(ypu) = ypbu + yuép (B-38)

8(ypv) = ypdv + pvép (B-39)

Substituting all of the above results into Eq. (B-2) yields the
following expression., Note that the direction of the line integrals
has been reversed by interchanging the limits of integration and multiply-
ing the integrands by (-1), resulting in no net change in the values of
the integrals.

~

C
I {nn'GP + ClGPGP + Cznp(n'su - Gv)} dx +
c (C B
+ I - J - J hlypév + hlyvép + thv6u + hspvdv +

n
2
+ hg8P + h,veP - h,a®vép + pv izlgisci} dx -

c (¢ B ,
- -1 - h,ypéu + h.yusp + h_pusu + h_pudv + (B-40)
1 1 2 3 \_
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+
]

i

+ [—h4

+
t

yp(h), + hyou - (hyou), - (hZOV)y + hapv, +

yo(hl)y + thuy + hspvy - (hpou) - (hSOV)y +

53

2
+ h26P + h4u6P - h4a uép + pu .

1

n
Zlgi“i} dy + 73-40)

ne-13

2
* h4px - h4a Py * P gi(Ci)x]éu *

i=1

2
+ h4Py - h4a py +p

ne~—s

g4 (Ci)y] §v +

i=1

2
B Quwoy + Vo)) - (b)), - (b - () - (hyv)y -

n n
-hy L¥p - ] giUiP]GP *
i=1 i=1

yu(hl)x - yv(hl)y + hzuux + hzvuy + hsuvx + hsvvy +

+

2 2
a (h4u)x + a (h4v)y +

2 t 1 1
h,ua .Z SICTINRS L RS I
i=1
n
2 1 1
h4va {izlai(ci)y * 3 Py -5 py} +

n
g.(C.)_+v ) g.(CH_ -
p117x jo1 1017y

+

+

+

u

1

I ~3

n n
-h, Jv. - ] g.o0. JGp + (B-40)
METSIL L = R
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'
n
2
+ 121 [} h,aa, (up + pr) - (ggpu), - (gipv)y - (B-40)
i i
- h (WJc. - g(c)]sc. dxdy = 0

S

Consider first the line integrals appearing in Eq. (B-40). Note

that along AC

C C
J f(y)dy =J fn(x)In'dx (B-41)
A A

Substituting Eq. (B-41) into Eq. (B-40), and noting that the line in-
tegrals must equal zero independently of the surface integrals for
arbitrary variaticns in the gas properties, the following equations are

obtained.

C -
1) - | ]
I Lanpn + thv thuﬂ hlnon ]Gu +

+ |-cC

NP + hSOv + hlnp - hspun']év +
' - v '
+ Ew\ + h3 + h4v hzn h4un + ClGé]GP +

2 2, '
+ [} h4a vV + hl"v + h4a un' - hlnun ]Gp

n
+ Z pvg, - pun'g;]éci dx = 0 (B-42)
i=1
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C (B - -
f + J }{thvdx - thudy - hlypdy du +
B A - *

+ hspvdx - hspudy - hlypdx_ Sv +

+ -hsdx - hzdy + h4vdx - h4udy]6P +

+ (: h4a2vdx + hlyvdx + h4a2udy - hlyudi]ép +

+
he~13

[pvgidx - pugidy:ltscz.l =0 (B-43)
i=1

Since the integral in Eq. (B-42) must equal zero for arbitrary
values of 8u, év, &P, §p, and aci, the coefficients of these variations
must equal zero identically, resulting in the following equations re-

spectively which must be valid along AC.

h, [x,n(x)] = C,y(x) (B-44)
hy [x,n(x)] = C,(x) (B-45)
uhg - vh, + vn + uC,G, = 0 (B-46)
0=0 : (B-47)
0=0 (B-48)

Thus, the two independent relationships given by Eqs. (B-44) and (B-46)
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must apply along the nozzle contour AC,

Since no variations in gas properties are allowed along AB, the line
integral along that curve will already be zero and no new conditions result.
However, the variations along BC are arbitrary, thus requiring the co-
efficients of the variations to be zero, resulting in the following equa-

tions respectively which must be valid along BC.

thvdx - thudy - hlypdy =0 (B-49)
hspvdx - hspudy +—h1ypdx =0 (B-50)
U
hgdx - hydy + h,vdx - h4jdy =0 (B-51)
2. 2
- h4a vdx + hlyvdx + h4a udy - hlyudy =0 (B-52)
gi(udy - vdx) =0 (i=1,..,n) (B-53)

Solving these equations simutaneously gives the following equivalent

relationships.
yy'h1 + {uy' - v)h2 =0 (B-54)
yh1 - (uy' - v)h3 =0 (B-55)

2
yh1 - a h4 =0 (B-56)

2
yh; - a‘h, = (B-57)

f
(=]
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gi(uy' -v) =0 . (i=1,..,n) (B-58)

Thus, the four independent relationships expressed by Eqs. (B-54), (B-55),
(B-56), and (B-58) must apply along the left running Mach line BC.

Returning to the surface integral appearing in Eq. (B-40), the vari-
ations in gas properties must be arbitrary over the region of integra-
tion. Hence, the coefficients of the variations must be identically zero,
resulting in the following partial differential equations.

2
u

hpou + hgov. - h,[(pu), + (DV)y] +h,(P, - a%) -

+

n

yp(h)), - puthy), - ov(hy)) + o iZlgi(ci)x =0 (B-59)

[=
+

2
h,e y hsovy - ho[(pu) + (DVJy] + h4(Py - a oy) -

n
yp(hy)y - euthy), - pv(hg) + o iZlgi(ci)y =0 (B-60)

2
- (hy)y - (hy) - (hyu), - (V) - h, 3= (up + vo,) -

n n
-hy L ¥ip - ) gosp =0 (B-61)
i=1 i=1 I
2 ™)
hz(uux + vuy) + hs(uvx + vvy) + h4a (ux + Vy) +
2 N1 L 2 N th
+ hjua [F P+ Z ai(ci)x] + h,va [‘15' py + 'Z ai(ci)y] +
i=1 i=1
n n
+uEggq&+v02%w9y-wmpx-wmﬂy+ (B-62)
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n

n
2 2
+a’u(hy), + av(hy) - b, izlwip - iZlgioip =0 (B-62)

g; [(ou), + (OV)y] + h4a2ai(uox + voy) + pu(g;), + DV(gi)y +
) R
+h (W) + o, )@ =0 (i=1,..,n) (B-63)
¢ L 00c, @ Blde,

Equations (B-59) and (B-60) can be simplified by employing the gas

continuity equation, Eq. (1).

[w, *+ GV ] = - & (B-64)

Thus, Eqs. (B-59) and (B-60), after multiplication by (-1/p), become

1 2
- hyu, - hgv -h S (P -a Py *+ ¥(hy), +ulhy), +
n
+v(hy), - iZlgi(ci)x = K, (B-65)
= v -
Ky = hy 3 (B-66)

1 2
- h,u - h,v -h4E-(Py-apy)+y(h1)y+u(h3)x+

+

n
vihgy - L gi(C)y = Ky (B-67)

(B-68)
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Equation (B-61) can be written in the following form.

2
a
h4ux + h4vy + h4-$— (upx + pr) + (hz)x + (hS)y +

+ u(h4)x + v(h4)y = K3 (B-69)
n n
Kg=-hy Dwp- eos (B-70)
i=1 i=1
B

Next, to simplify Eq. QA-62), recall the system momentum equations,

Eqs. (2) and (3).

(B-71)

]

X

{]

'
O |-

o

(uu_ + vuy)

(B-72)

n
'

O =
-

(uvx + vvy)

Multipling Eq. (B-69) by - a2, adding the result to Eq. (B-62), substitut-
ing Eqs. (B-71) and (B-72), introducing the system energy equation, Eq. (4),

and the species continuity equation, Eq. (5), the following result is ob-

tained.
E-2--P + 22 P +yuth)) + yv(h) + 2(h ).+ az(h ). =K (B-73)
p x Tp Ty PYulpdy, v yvilyd, v a Wy Iy 4
h4a2 g % 2 g 2
K, = Y. - h (@"y., + ¢. ) - g.(a%0,, + 0. ) +
4 P jo1 & 4 i=1 iP ip jo1 1 iP ip
n
1 .2
s Z thya®a; + g.)o, (B-74)

i=1
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Substituting the continuity equation, Eq. (1), into Eq. (B-63) yields

the following result.

2 .
hya"a;(up, + vo ) + pulg;), + ov(g;), = J; (i=1,..,n) (B-75)
J; = g; - h (W) - L g(o) (i=1,..,n) (B-76)

%y T KRG g KRG

Equations (1) through (5), together with Eqs. (B-65), (B-67), (B-69),

(B-73) and (B-75), constitute a system of (8+2n) equations for determining

the (8+2n) variables u, v. P, p, Ci’ hl‘ h2’ h3’ h4,

Appendix E, these equations form a system of quasilinear, non-homogeneous,

and 8+ As shown in

first order partial differential equations of the hyperbolic type. Thus,
the system can be replaced by an equivalent system of characteristic and
compatibility equations, which are total differential equations of the
first order. The following characteristic system was obtained in Appendix

E. Along gas streamlines,

dy . ¥ -
== (B-77)
pudu + pvdv + dP = 0 (B-78)
2 1 ¢
dP - adp = = ] ¢, dx (B-79)
ui___ll

pudCi = oidx (i=1,..,n) (B-80)
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- h,du - hsdv + ydh, + udh, + vdh

2 1 2 37
n ) n
= Kdx + K,dy 4+ h, J y,dx + — ) g.o, dx (B-81)
1 2 ou 4 L Vi pu (L. %574
i=1 i=1
2
(vh, - uh,)dv + 1 h. dP - h, 2% (y-1) do + yudh, - ua’dh, =
2 3 5 2 4 o 1 4
2 v 2
= |:— h4a 7 a K3 + K4:ldx (B-82)
2 _
udgi = Jidx - h4a uaidp (i=1,..,n) (B-83)

Along gas Mach lines,

%% = tan (6%a) (B-84)

2 1 .2 2v 1 ¢
a“(vdu - udy) ¢ > a“cota dP = (udy - vdx) |a y + . wi (B-85)

n
1 2 -
hydu + hedv + S h, (dP - a"dp) + iZlgidci - ydh, *

+1

tana (vdh2 - udhs) = t tana (szx - Kldy) t
+ L tana (udy - vdx) rk +Ln E (B-86)
22 na (uay L4 o 4 .=1‘Pi

where 6 is the flow angle and a is the Mach angle. In Eqs. (B-84), (B-85),
and (B-86) the upper signs refer to left running Mach lines and the lower
signs to right running Mach lines. Note that Eqs. (B-85) and (B-86) are
actually two equations each when applied along the two Mach lines.

In summary, Eqs. (B-77) through (B-86) can be employed to evaluate
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the parameters x, y, u, v, P, p, C,, hl’ h2’ h

i h, and g; throughout

3 74
region ABC.
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APPENDIX C

ANALYSIS OF VARIATION OF NOZZLE CONTOUR AND END POINT

In the consideration of variations of the nozzle contour n(x) and
nozzle end point Xc, only the line integral along AC in Eq. (18) con-
tributes. The contour n enters this line integral in two ways, directly
as a factor in the integrand, and as the value of the argument y of all

gas properties. Thus,
u(x,y) = ulx,n(x)] (C-1)

and similarly for the other properties. Variations in the gas properties
holding x, y and n fixed were taken in Appendix B. In this Appendix,
variations in the gas properties will be taken holding x fixed while
variations are allowed in n. These variations are independent of those
taken in Appendix B. Thus, along AC, the following variations in gas

properties are allowable.

Su = %ﬁ {u[x,n(x)i}gvl for x fixed (C-2)
Su = u_é c-3
o1 (C-3)
In an analogous manner, one obtains

§v = v & C-4
Y& (C-4)

sP

[i]
s~
<
[ ]
=3
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Sp = 8 C-6
p = p,8n (C-6)

Taking the variation of n along AC in Eq. (18) results in two effects.
The first arises from variations in n under the integral sign, and the
second results from the variation of the limits of integration. Since
these effects are independent, they can be considered one at a time.

First, consider the variation of the limits of integration. At point
A, no variations are allowed. Hence, no additional conditions are found.
However, a variation in ch GXC, is allowable. Noting that (un'-v) = 0

along AC, the following result is obtained,
[(P-P)nn' + ClG(n,n',P)]xc X, =0 (C-7)

Since ch is arbitrary, the term in square brackets must equal zero.

Therefore,

c nc' (Pc'Po)
G

n

C, = - (C-8)

Next, consider the variation of n under the integral sign.

C
j {5[(P-Po)nn°] + C,8G(n,n',P) + Czé[np(ur\’-v‘)]} dx = 0 (C-9)
A

C
J - ' - ] ]
JA {nn §P + (P Po)n én + (P Po)nén + ClGnén + ClGn,Gn +

+ ClePyén + Cz(npu)én' + Cz[n"G(npu)-G(npv)]} dx = 0 (C-10)

Substituting Eqs. (C-3) through (C-6) into Eq. (C-10) gives

C
v - 9 1 -
IA {[nn Py ¢ (P-P)n* ¢ C)G + ClePy + Cyin (npu)y (an)y}]Gn +

+ [(P~Po)n % CIGn° + C2(npu)]6n' } dx = 0 (C-11)
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From the continuity equation, Eq. (1).
- (noV)y = (nou) (C-12)
Thus the fifth term under the integral in Eq. (C-11) can be written as
C, {(ﬂpu)x + n'(nQU)y} (C-13)

However, along AC,

T " 3% (C-14)

Equation (C-13) thus becomes

c, %x- (npu) (C-15)

Integration by parts can be applied to the terms involving én' in

Eq. (C-9). The following result, after introducing Eq. (C-15), is obtained.

X
c
{[(p"Po)n + CIGn' + CZ(HOU)] 6“} le +
+ JC (P, -nSLsce +cGP +C, L (nou) -
A 1My @ T e T Ty T2l VP
e, 6 ) -4 Conouw)] snl dx =0 (C-16)
1dx “n' dx ‘72
In the terms arising from the limits of the integration by parts, the
variation in &n at XA is zero since the flow must match the flow upstream

of point A at point A. However, 6n at xc is not fixed., Hence, the follow-

ing result is obtained.

Jnpu_ =0 (C-17)

(Pc'po)nc * ClGn'(xc) * Cz(xc c’c'c
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Substituting Eq. (C-8) into Eq. (C-17) and solving for CZ(xc) gives

(C-18)

(P.-P.) ne Gn.(xc)
C,(X) = - ——— [1 -

Pl G(Xc)

Returning to the line integral in Eq. (C-16), the following simplifi-

cations can be made.

dC

d 2
- & (Cynew) + C, §= (now) = - mpu = (C-19)
3P dp _
m'ay T Nax T - Py (C-20)

From the system momentum equations, Eqs. (2) and (3), Px and Py can be

expressed as follows.

Px = - pu(ux + ﬁ'uy) = - pu 3~ (C-21)
P = - pu(v_ + y v.) = - pu .d_‘.’. (C-22)
y X u'y dx

Setting the coefficient of &n in Eq. (C-16) equal to zero, and substituting
Eqs. (C-19), (C-20), (C-21) and (C-22) into Eq. (C-16) gives the following

result.

dC (P_~P_)n n_ '
2 _du c occc 1 |d dv
& &t G(X.) npu [dx Gyed + PGy, Ix Gn] (C-23)

Integrating Eq. (C-23) between the limits x and Xc, noting that the positive
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direction is from C to A, gives

(Pc-Po)ncnc' Xe 1 [a dv
Cz(x) =u - G(Xé) J — [—- (G.) 7oqu'—— - Gn]dx + C3 (C-24)

nou {dx “ n' dx

Evaluating Eq. (C-24) at point C and equating the result to the result found

in Eq. (C-18) gives the following equation for C30

(P.-P) ne G (X
C3 = - uc - W [1 - ———(-;-(-)-(::-)—-—J (C-ZS)

Substituting Eq. (C-25) into Eq. (C-24) yields the final result for Cz(x).

(PP, [1 g Gye (X ] )

CZ(X) = (u-uc) - pcuc é(xc)
(PPInn' X, 1 [4 a6 e dv 8
IS I nou [fo— o)+ v Gp) 5 - ﬁ)]dx (C-26)

Thus, Cz(x) can be determined along AC once the flow properties are known
at point C.

In Appendix B, it was shown that along AC,
hy [x,n(x)] = C,(x) (C-27)

Hence, the Lagrange multiplier hl(x,y) can be evaluated along AC, giving
a boundary condition for the determination of the Lagrange multipliers

throughout the flow field.
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APPENDIX D

METHOD OF CHARACTERISTICS

In many engineering problems the governing differential equations
are systems of quasi-linear, non-homogeneous, partial differential
equations of the first order for functions of two independent variables.
A quasi-linear partial differential equation of the first order is de-
fined as one that is non-linear in the dependent variables, but linear
in the first partial derivatives of the dependent variables. Such a
system of n equations can be written as*

auj au'

i3 thjny =0

(D-1)

L=
p—
(ST
nn
—

- -
[
. o
o o
A J -
==
e NS

where the superscript j identifies a particular dependent variable, and

the coefficients aij’ bij’ and c; depend on x, y, ul,...,uJ. When ex-

panded, this system of equations becomes

1 2 n 1 2 n )
L1 = a;,u, +au b ta U + buuy + blzuy+...+b1nuy te = 0

1 2 n 1 2 n _
L2 = aju +oayu t...das u 4 b21“y + bzzuy+...+b2nuy tc, = 0

f (D-2)
L =a ul + a u2+...+a un +b u1 +Db u2+...+b un + ¢ =20
n nl x n2 x nn x nl'y n2'y nny n
=

*In accordance with accepted convention, when an index is repeated,
summation is carried out with respect to that index.
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When such a system of equations is hyperbolic, the method of charac-
teristics can be employed to obtain the desired solution. To simplify
the presentation, the theory will first be developed for a system of two
equations, and those results will then be extended to systems of n equations.
Consider a linear combination of the first order partial derivatives

of a function f(x,y).
af  + bfy +¢c=0 (D-3)

In Eq. (D-3), a, b, and ¢ may be functions of f, x, and y. Equation

(D-3) may be rearranged as follows

f)+c=0 (D-4)

b
a 'y

a(fx +

If f(x,y) is restricted to be a continuous function having continuous

derivatives, the following relationship must also be valid.
df = £ dx + fydy (D-5)
Equation (D-5) may be rewritten as follows

df _ d
= (5 * % £,) (D-6)

Comparing Eqs. (D-4) and (D-6), it is seen that Eq. (D-4) may be written as

adf + cdx =0 (D-7)
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if the following relationship is forced to apply.

Equation (D-8) is the equation of a curve in the (x,y) plane if (b/a) is
a real function. Such a curve, if it exists, is called a characteristic
curve. Partial differential equations for which characteristic curves
exist are termed hyperbolic equations. Along the characteristic curve,
the function f(x,y) can be evaluated by applying Eq. (D-7), which is a
total differential equation relating df to dx along the characteristic
curve. An equation such as Eq. (D-7) is called a compatibility equation.
Thus, the original partial differential equation specified by Eq. (D-3)
can be replaced by the equivalent system of a characteristic curve along
which a compatibility equation is valid. Such a replacement is the basis
of the method of characteristics.

Consider now a system of two equations for the two dependent varia-
bles u(x,y) and v(x,y). Thus

Ly = au * by * 2V * Bppvy * 6 = 0

(D-9)

e
n

a,.,u_+ b,.u =+ azzvx + bzzvy + c2 =0

217x 217y

It is desired to find an equivalent system of characteristic curves and
compatibility equations with which Eq. (D-9) can be replaced. Since both
equations in Eq. (D-9) are coupled through the dependent variables u(x,y)

and v(x,y), both equations must be considered simultaneously. This can
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be done by forming the differential operator

L=o, L, + 0, L (D-10)

where 9 and o, are arbitrary functions. Substituting Eq. (D-9) into

Eq. (D-10) and putting the result into the form of Eq. (D-4) yields the
following expression.
(by19) * B319)

(ay,0, + a,,0,) u_ + u +
1171 2172 X (auw1 + a2112) y

(b,,0, + b,,0.)
12°1 * P22% I
(31291 * 2229 | Vx * a0, ¥ 8,00 'y | T (01017600 (O-1D)

Equation (D-11) becomes
(ano1 + a2102) du + (alzo1 + 32202) dv + (clo1 + czoz) dx=0 (D-12)
if the following equations are valid, where A = (dy/dx).
b,,0, + b..o
A= A1l 2172 (D-13)

a411%1 Y 1%

~ b + D9,

2292

12°1
212%

+ a

and o, considered as the un-

Equation (D-13) can be rearranged with o 2

1

known variables.

[]
o

cl(allx - bll) + oz(aZIA - b21) (b-14)

L]
o

0;(a)ph = byy) + 0y(ah - byy)
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For Eq. (D-14) to have any solution for o, and Tos other than the trivial

1

= 0, the determinant of the coefficients of o, and ¢

ion =
solution ¢ o] 1 2

1 2

must be zero. Thus,

(ajh - byy) (ayh - byy)

=0 (D-15)
A -b A - b,

(), 12) (ay, 2)

Expanding the determinant of Eq. (D-15) results in an equation of the

following form for X,

Ax2 - 2B +C=o. (D-16)
where
A= (ay)3,, - 3;53,))
B = a(a, b, + a,byy - a,. by - a, b)) (D-17)
7(a11P97 * 8550 = 319051 - 359Py;
C = (byyby - byobyy)

The terms A, B, and C are seen to be functions of the coefficients of the
original system of partial differential equations, Eq. (D-9).

If B2 - AC < 0, no real solutions for X exist, and the characteristic
curves are imaginary. Partial differential equations that result in imagi-
nary characteristic curves are termed elliptic. If 82 - AC = 0, one real
characteristic direction exists through each point, and the system is called
parabolic. If B% - AC > 0, two real characteristic directions exist through

each point, and the system is called hyperbolic. The discussions which

follow are concerned only with hyperbolic systems.
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For hyperbolic systems, Eq. (D-1) has two distinct solutions Al and

A Hence, the two characteristic curves satisfy the two ordinary differ-

2.

ential equations

(D-18)

sl
"
>

dy _
a-; = )\1 and

Since the roots A, and A, are functions of x, y, u and v, the hyperbolic

1 2
character of the system depends on the particular functions u(x,y) and
v(x,y) under consideration. When a solution u(x,y) and v(x,y) is inserted
into Eq. (D-18), the equations dy/dx = Al(u,v,x,y) and dy/dx = Az(u,v,x,y)
are two ordinary differential equations of the first order that define two
families of characteristic curves, or simply the characteristics, in the
(x,y) plane.

Returning to Eq. (D-12), which is the general compatibility equation

for the system, o, and o, can be eliminated in terms of X from Eq. (D-13).

1 2
Values of % and 9y from the solution of Eq. (D-14) can be introduced into
Eq. (D-13) to solve either for o, and o, directly, or for one of o¢'s in

1 2

terms of the other one. The results can be introduced into Eq. (D-12),
thus eliminating both 9 and Ope The result is two compatibility equations

(one for Al
curves given by Eq. (D-18). Thus, Eqs. (D-12) and (D-18) can replace the
original system of partial differential equations, Eq. (D-9).

By analogy to the case of two partial differential equations dis-

cussed in the foregoing, the method of characteristics can be extended

to a system of n partial differential equations. The governing equation

and one for Az) relating du, dv, x and y along the characteristic
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for such a system is Eq. (D-1), repeated below.

i = %5 Pyt o

.
Hon

j j .
Ju b du (1 i,...,n ) (D-1)
yes

The equations specified by Eq. (D-1) are combined in a linear manner to
form the following differential operator.

L = oy Li =0, L1 + o0, L2 MR Ln =0 (D-19)

Putting Eq. (D-19) into the form of Eq. (D-4) results in the general com-

patibility equation for the system

(a..0.) dul + c.o, dx =0
iji i'i

——
[Py
nn

l,..,n

1,..,n) (D-20)

In order for Eq. (D-20) to be valid, the following expression for A must

be true.

no#

.,N

= bi = 1,...n
aijcik = bijoi (j 1., ) (D-21)

Equation (D-21) consists of n equations for A when j takes on values 1

through n. Solving for s yields

(D-22)

cm——
e
nu
[y
- -
- L
e .
v »
= =]
SRS

oi(aijk - bij) =0

For the solution of the system of equations defined by Eq. (D-22) to be

other than zero, the determinant of the coefficients of o, must vanish:

(Db-23)

nou
il nd
v w
ER:
S

la..A - b,.] =0 ('1.
1} 1) J
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The expanded determinant results in an algebraic equation of the nth
degree for A = dy/dx, giving n roots, Am (m=1, 2,....,n), which determine
n characteristic directions. If all n roots are distinct and real, the
system is totally hyperbolic. In that case there are n families of charac-
teristics satisfying the ordinary differential equations.

dy _ - -
a- = )\m (m = 1: °"n) (D 24)

Once the lm are determined from Eq. (D-24), the o, can be evaluated
from Eq. (D-21). In general, all the o5 but one can be solved for in terms
of the remaining one which can then be cancelled out in Eq. (D-20). These
results, when substituted in the general compatibility equation, Eq. (D-20),
determine the compatibility equations for the system. Equations (D-20) and
(D-24) can replace the original system of partial differential equations,
Eq. (D-1).

The initial value problem can now be formulated for the above system
of hyperbolic differential equations. Assume a curve TS is given in the
(x,y) plane, and continuous values of uj are arbitrarily prescribed along
Po as illustrated in Fig. (D-1). The problem is to determine, in the
neighborhood of Po, a solution uj of the system that has the prescribed
initial values along Fo. By replacing the original system of partial
differential equations by the characteristic system, the problem reduces
to solving the total differential equations given by the compatibility
equations along the characteristic curves. In general, these equations

are non-linear and coupled. For that reason, a solution procedure based

on a numerical iteration technique is required. The compatibility equations,
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each of which is valid along one or more of the characteristic curves,
can be written in finite difference form, as can the equations of the
characteristic curves. By moving along the characteristic curves, the
initial values of uj along Fo can be extended into the domain enclosed
by the outermost characteristic curves passing through the initial data
curve Po. By continuing in small steps along Po, a new curve, Pl, can
be obtained with all the values of uj determined along that curve, as
illustrated in Fig. D-1.

The foregoing considerations result in the concepts of domain of
dependence and range of influence. Figure D-2 illustrates the domain
of dependence of a point P, which is the region in the (x,y) plane
bounded by the outermost characteristics passing through the initial
value line Fo, and is the region wherein the solution of the initial
value problem can be established. Figure D-3 illustrates the range of
influence of a point Q on the initial value line ro, which is the region
in the (x,y) plane containing all of the points which are influenced by
the initial data at point Q. The range of influence is comprised of
all of the points having a domain of dependence containing the point Q.
Therefore, it is the region between the two outermost characteristics
passing through point Q.

For a solution to be possible, the initial value line cannot be
characteristic at any place unless initial data are given along two
intersecting characteristic curves. Several types of domains having
different types of initial value lines can be solved.

By applying the method of characteristics as summarized in the

foregoing discussion, it is possible to solve many complicated systems
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of partial differential equations, provided the system is quasi-linear
and hyperbolic. The latter conditions are frequently encountered in

fluid flow problems.
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APPENDIX E

CHARACTERISTICS RESULTING FROM VARIATIONS OF GAS PROPERTIES

In this section, the method of characteristics as developed in
Appendix D will be employed to obtain the characteristic and compatibility
equations for the system of partial differential equations resulting from
the variations of gas properties. It is shown that the characteristic
curves are the Mach lines and the gas streamline, and that there are a
sufficient number of compatibility equations valid on these characteris-
tic curves with which to replace the original system of partial differ-
ential equations.

The system of equations to be considered consists of the ten partial

differential equations, Eqs. (1) through (5), (B-65), (B-67), (B-69),

QO
(B-73), and (B-75), which g*vern the variables u, v, P, p, Ci’ hl’ h2,
h3, h4, and g+ These equations are repeated below for convenience,
= - &V -
pu, + PV, +up 4 upy = - 7 (E-1)
u + P =0 E-2
plua + vu) + P, (E-2)
uv_+ vwv ) + P =0 E-3
p(uvy y) * Py (E-3)
2 n
uP_ + va - a“(up, + pr) = E vy (E-4)
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pu(ci)x + pV(Ci)y = Ui (i=1,..,n) (E-S)

1
Uy = Dgvy - 5 hy(Py

]

=2

=]
'

2 n
a’p,) - .z g5 (Cily +
i=1

+y(hy), +uhy) + V(hz)y = Ky (E-6)
1 2 1
- hzuy - h3vy - -S-h4(Py - a py) - iZlgi(ci)y +
+ y(hl)y + u(hS)x + v(hS)y = Kz (E-7

+

1 2
h4ux + h4vy + h4 78 (upx + vpy) + (hz)x + (hs)y

+ u(h4)x + v(h (E-8)

4)y = KS

+

1 1 2 2 _
B—-hZPx E-hSPy + yu(hl)x + yv(hl)y + a (hz)x + a (hS)y = K4 (E-9)

2 = i= -
h4a ai(upx + pr) + Du(gi)x+ pv(gi)y - Ji (1—1,..,“) (E 10)

The non-homogeneous terms K., K K, and Ji are defined by Eqs. (B-66),

10 Kp» Kgs Ky
(B-68), (B-70), (B-74), and (B-76). These terms involve the gas properties

u, v. P, p, and Ci’ and the Lagrange multipliers h hz, h3, h4, and 8-

10
As shown in Appendix D, the characteristic curves are found by expand-
ing the following determinant.

|aijx - bij| =0 (E-11)



The detailed form of Eq. (E-11) is shown below.

[Gas] =

81

[Gas] Zeros
Terms Coupling
Multipliers to [Multipliers]

Gas Properties

pA -p 0 {(ur-v) 0 oo

p (ur-v) 0 A 0 0 oo
0 p(ukv) -1 0 0 e

0 0 (uiv) -a2 w-v) 0 o

0 0 0 0 pluir-v) 1"

0 0 0 0 0 oo

0 0 0 0 0 oo

p(u }"v)i

oo p(uk—v)]1

(E-12)

0 (E-13)

0

The terms denoted by p(uA-v)i arise from the coefficients of Eq. (E-5), the

species continuity equation.

As indicated, there are n columns and rows

in Eq. (E-13) corresponding to the n chemical species being considered, in

addition to the four columns and rows corresponding to Eqs. (E-1) through

(E-4).

The rows and columns of double dots <+ indicate the position of the
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additional terms when applicable.

yr (uir-v) O 0 0 oo 0 oo 0
-y 0 (ur-v) O 0 oo 0 oo 0
0 A -1 @u»v) O oo 0 oo 0

y@A-v) a’x -a? 0 0 e+ 0 e 0

Multipliers] = 0 0 0 0@y c- 0 e 0 g gy
0 0 0 0 0 epky s+ O
0 0 0 0 0 oo 0 oo p(uk-ﬁ%

As in Eq. (E-13), the terms p(u)‘-v)i arise from the coefficients of the
n equations contained in Eq. (E-10).

Since the upper right corner of the determinant given in Eq. (E-12)
is filled with zeros, the expansion of Eq. (E-12) reduces to the following

form.
| [Gas]| x |[Multipliers]| = 0 (E-15)
Setting Eq. (E-13) equal to zero results in the following expression.
[Az(u2 - az) - 2uvi + (v2 - az)] (ux - v)2+n =0 (E-16)

The characteristic curves are found by solving for A, thus giving for this

system the Mach lines each appearing once and the gas streamline appearing
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(2+n) times.

r_v i
by ix - o (E-17)
2/ \?
- §2.= uv ¥ a M~ - 1 _
by 3% u2 - az (E-18)

8 =tan ¥ (E-19)
u

(E-20)

In terms of 6 and a, Eq. (E-18) becomes

A = % = tan(6ta) (E-21)

Setting Eq. (E-14) equal to zero gives the following result.
2@? - a%) - 2uvd + v - 2B @-v)Z*P = 0 (E-22)

Equation (E-22) is the same as Eq (E-16). Hence, the characteristic curves
obtained from Eq. (E-22) will again be the Mach lines and the gas stream-
line appearing (2+n) times.

Thus, the characteristic curves obtained for the system of partial
differential equations, Eqs. (E-1) through (E-10), are the gas streamline

appearing (4+2n) times, and the gas Mach lines each appearing two times.
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A total of (8+2n) distinct, real characteristic curves thus exist, making
the system totally hyperbolic,

To determine the compatibility equations for the system of partial
differential equations, Eqs. (E-1) through (E-10), the method developed
in Appendix D will be employed. The general compatibility equation is
found by forming the sum o;Lss where the o, are unknown functions. In
the present case, Eqs. (E-1) through (E-4) will be multiplied by 9 through
Ty Eqs. (E-6) through (E-9) will be multiplied by o

through o,, and Eqs.

5 8’
(E-S5) and (E-10) will be multiplied by ei and ny respectively. These o's,

6's, and n's are arbitrary functions employed in the determination of the
compatibility equations, and are not the same as the o's, 6's, and n's
defined in the Nomenclature, Section V. Thus after some grouping, the

following equation is obtained.
(po1 *+ puo, - hzcs + h4o7)du +(puo3 - hSUS)dv +

1 1 2 1 2
+ (02 + uo, - -p-h405 + Khzos)dp + [uol - auo, + B-h4a O +

1. .2 2 7 t
+ $hya’uo, + hyau izlnia%]dp + iZl(puei - 0gg;)dC, +

, 2
+ (yo5 + yucxs)dh1 + (uo5 to,+a <18)dl'x2 + (u06)dh3 +

n
iZl(eioi + n,J,)dx (E-23)

.

8
) o.N.dx +
se1 33

n
+ (u°7)dh4 + irz_lpunidgi =

In Eq. (E-23), Nj represents the non-homogeneous terms in Eqs. (E-1) through
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(E-4) and (E-6) through (E-9). The terms o; and Ji are the non-homogeneous
terms arising in Eqs. (E-5) and (E-10) respectively.

The equations for A, obtained as discussed in Appendix D, are as follows.

pvo., - h.o

2 276
A = (E-24)
pv1 + puc2 - h2°5 + h4o7
PO, + pvo3 - h306 + h4o7
A= T (E-25)
PUTZ = N30g
1 1
g, +vo, -—ho +—h_o
A= 3 4 ;;46 238 (E-26)
9, + uog, - -E-h4oS + E-hzos
2 1, 2 1, 2 2 B
vo, - a'vo, + ~h,a‘c, + 5 hja’ve, + hya’v iZlniai
A = - (E-27)
2 1 2 1 2 2
us, - a‘uo, + 5-h4a og + 5-h4a uo7 + h4a u iZlniai
pve. - o.g.
A= p—ugi—_—?"—i (i=1,..,n) (E-28)
i~ %8
NRA TR A ]
Yoz *+ yuog (E-29)
Vo,
A= (E—SO)
usg + 0, + a‘og
Vo, + 0, + a0
A= —2 7 8 (E-31)
ug
6
Vo,
A= o (E-32)
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pVvNn

pun, (i=1,..,n)

(E-33)

Rearranging Eqs. (E-24) through (E-33) gives the following equations for

%1 through Ogs ei, and ng» in terms of the characteristic direction A.

al(pA) + ozp(uA-v) + 05(-h2A) + 06(h2) + 07(h4A) =0

01(—p) + osp(ul-v) + 05(-h31) + 06(h3) + 07(-h4l)

+

oz(A) + 03(-1) + 04(uk-v) + 05(~%-h4l) + 0665 h4)

1 -
+ 0g 5hyh - hg) = 0

+

2 1 2 1 2
ol(ux-v) + 0,2 (v-u)) + 05(5-h4a A) + 06(—3-h4a )

1 2 2 n
+ 0765 h4a ) (ur-v) + h4a (ur-v) iZlniai = 0
pur-v)6, + o (-g;A) + o.(g;) = 0 (i=1,..,n)

os(l) + 06(-1) + os(ux-v) =0
o (Wh-v) + 0, (1) + os(azk) =0

g, (Ur-v) + 0,(-1) + 0o (-az) =0
6 7 8

[
(=]

07(uA-v) =

(E-34)

(E-35)

(E-36)

(E-37)

(E-38)

(E-39)

(E-40)

(E-41)

(E-42)
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p(ur-v)n; = 0 (i=1,..,n) (E-43)

Equations (E-34) through (E-43) may now be solved for 9 through Ogs
8> and n: s for each specific value of A. The results may be substituted
back into the general compatibility equation, Eq. (E-23), to obtain the
particular compatibility equation which is valid on the characteristic
curve pertinent to the value of A chosen. In the present case, only two
separate equations for A exist, Eqs. (E-17) and (E-18). Evep though Eq.
(E-18) is actually two equations when the plus and minus signs are con-
sidered, the combined form of the equation may be employed to obtain a
set of compatibility equations which will then be valid on both character-
istics obtained from Eq. (E-18). The compatibility equations valid on
the gas streamline will be determined first.

On the gas streamline, Eq. (E-17) becomes
(ur-v) = 0 (E-44)

Substituting Eq. (E-44) into Eqs. (E-34) through (E-43) and solving the

resulting system of equations gives the following results.

LN (E-45)

1
I
=
Y
Q

1
o, = E-h4a o (E-46)

(E-47)

Q
H
>
Q
N
+
O
TanY
=
N
>
]
=2
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g = Aog (E-48)
Og = Aos (i=1,..,n) (E-49)
O¢ = kos (E-50)
= -a? (E-51)
o, = -aog
= -a? (E-52)
0, = -a’og
07(0) =0 (E-53)
ni(O) =0 (i=1,..,n) (E-54)

Of the above ten equations, four independent relationships are given by Egs.
(E-45), (E-47), (E-48) and (E-51). Observe that ei and n; are arbitrary.
Thus, four equations exist relating the eight oi's° Note that Oy does not
appear in the system of equations, and is therefore arbitrary. Hence, three
of the remaining seven oi's are arbitrary and independent. If Tps Oys Ogs and
g

are chosen as being arbitrary, Oy Ogs Ogs and o, can be expressed in

8 7
terms of these four by the four equations obtained above. Substituting those
four equations into the general compatibility equation, Eq. (E-23), and solv-

ing for the coefficients of the four arbitrary o.'s, the arbitrary 6.'s, and
i i

the arbitrary ni's, gives the following result.
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2 n
o, {pudu + pvdv + dpr} + o, {udP - a“udp - ) yydx} +

1
p

[ Kt l=]
(5]
o
(@]
+

2
+ o {-h,du - hedv - ~h, (dP - adp) -

+ ydh, + udh, + vdhy - (K dx + szy)} +

2 2 1
+ og {hya"du - hya”du + u(h,)-h;)dv + S hydP +
1 2 21 2 2 2
+ E-h4a udp - a ﬁ-h4a udp + yudh1 - a dh2 + a dh2 -
2 2 1 2
- a"udh, + a®Kydx - K,dx + ;-h4a vdx} +

n
+ 2 9. {pudCi - oidx} +
n
+ Jn, {n a%a,udp + pudg, - J.dx} = 0 (E-55)
L& 4~ 7i i i
Equation (E-17) has been substituted into Eq. (E-55) to eliminate A wherever
it appeared. Since Tgs Oys Ogy Ogs ei, and n; are all arbitrary, their
coefficients must be identically zero. Thus the following compatibility
equations valid on a gas streamline are obtained.
pudu + pvdv + 4P = 0 (E-56)

2 1 3
dP - a"dp = = Z ¥, dx (E-57)
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pudCi = oidx (i=1,..;,n) (E-58)
1 2 1
- hydu - hodv - = h, (dP - a"do) - izlgidci + ydh, +
+ udh2 + vdh3 = Kldx + szy (E-59)

1 1 2
(vh2 - uhs)dv + E-hz dP - ;-h4a u (y-1)dp + yudhl -

1 2 2
- uagh4 = - ;sh4a v dx - a K3dx + K4dx (E-60)

pudg, = J;dx - h,a’a udp (i=1,..,n) (E-61)

On Mach lines, Eq. (E-18) becomes
A2 (u2-a%) - 2uvr + (v2-a?) = 0 (E-62)

Proceeding as before by substituting Eq. (E-62) into Eqs. (E-34) through

(E-43), the following equations are obtained.

ra’ 1, ral ]
% = T o) Oy = E-kPZ + vy h4-J g (E-63)
oy = R—;—%)—od{*-} :Iu—;-f—vf)-h“-hs: o (E-64)
ozx - 05 % 04(u1-v) +-§ [(u)-v)h4 + (hzl-hs)os] =0 (E-65)
| gy = a204 + —-h4a208 (E-66)
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1, 2 1 .
ei = - 3-h4a a,og - B--gio8 (i=1,..,n) (E-67)
08(0) =0 (E-68)
2
_a
9 = - Tui-v) °8 (E-69)
a2
9% = (ur-v) s (E-70)
07 =0 (E-71)
ﬂi =0 (i=1,..,n) (E-72)

Multiplying Eq. (E-63) by - and adding the result to Eq. (E-64) gives Eq.
(E-65). Hence, Eq. (E-65) is not an independent equation. The eight
equations, Eqs. (E-63), (E-64), (E-66), (E-67), and (E-69) through (E-72),
relate the oi's, Gi's, and ni's. Thus, two of the oi's are arbitrary.

Choosing Oy and o, to be arbitrary, substituting the above equations into

8
the general compatibility equation, Eq. (E-23), setting the coefficients
of Oy and Og equal to zero, and simplifying the result gives the following

two equations,

1 2 2v 1 ¢
a%(vdu - udv) ¢ S a“cota dP = (udy-vdx) |5~ + = Z (E-73)
i=1
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n

h.du + h,dv + = h, (dP - a’dp) +
p 4 i=1

2 3

+ tana(vdh, - udhy) = * tana(K,dx - Kdy) *

%;Zana(udy - vdx) [x .t —;—h . zlwi] (E-74)
The upper signs in Eqs. (E-73) and (E-74) pertain to left running Mach
lines and the lower signs to right running Mach lines. Equations (E-73)
and (E-74) are each valid on both Mach lines, thus giving four independent
equations.

In summary, for the system of equations (E-1) through (E-10), (8+2n)
characteristic equations were found of which three, the two Mach lines and
the gas streamline, are distinct. A total of (8+2n) compatibility equations,
each valid along one of the characteristic curves, were found. Thus the
original system of partial differential equations may be replaced by the
system of characteristic and compatibility equations developed in this
Appendix. Figure E-1 illustrates the characteristic net for the present
system, indicating which compatibility equations are valid on which char-

acteristic curves,



93

RIGHT RUNNING MACH LINE
(E-73) (E-74)

STREAMLINE
(E-56) — (E-61)

INITIAL
VALUE
LINE.
LEFT RUNNING MACH LINE

(E-73) (E-74)

FIGURE E-|. CHARACTERISTIC NETWORK FOR GAS
PROPERTIES AND LAGRANGE MULTIPLIERS
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APPENDIX F

EVALUATION OF DERIVATIVES OF THERMODYNAMIC FUNCTIONS

The set of partial differential equations, Eqs. (35) through (39),
obtained for determining the Lagrange multipliers in region ABC contains
some complicated derivatives of the functions wi and 0 These derivatives
appear in the terms KS’ K4, and Ji defined by Eqs. (42), (43), and (44)

respectively., These terms are repeated below for convenience of discussion.

n n
Ky =-hy 1 ¥p- g (F-1)
i=1 i=1
a2 n n 2
Rg=hyp= I ¥ -hy T @« -
i=1 i=1
n n
2 1 2
- leg@op o)+ 2 T (hyatay ¢+ g)o;  (F-2)
i=1 i=1
ov n n
Jl = gi _)7 - h4 kél(q’k)cl - kilgk(ok)ci (121900911) (F‘s)

In this Appendix, these terms are expressed in terms of the fundamental
thermodynamic properties of the system,

The functions wi and o, as defined by Egs. (7) and (6) respectively
both depend on the temperature T in addition to the pressure P, density P,
and species mass fractions Cko In the optimization znalysis, these param-
eters were assumed to depend only on P, 0, and Cys the temperature depend-

ence being eliminated by substitution of the perfect gas law, Eq. (8).
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This transformation is accomplished here by employing two different

functional forms for wi and Oy From Eq. (7),

n n
lei(o,TSCk) = i£1¢;CT,ck)o§cp,T,ck) (F-4)

o

1

where
¢;(T9Ck) = [YRIT - (Y'l)hl] (F-S)

/
The function by and b are equal for compatable values of the arguments

of each functional form.
‘pi(Ps P sck) = IPJg_(D,T,Ck) (F'6)

Taking derivatives of Eq. (F-6) gives

= ¢ = -
Yip = Ygp * Vit Tp T ¥ir Tp (F-7)
{
- 9 ¥ -
wip =i, * ¥Yip Tp (F-8)

(Wk)ci = (wﬁjci + WﬂT TC° (F-9)
1

Substituting Eq. (F-4) into Eqs. (F-7) through (F-9) gives the following

results.

Yip = (0jp o5 + &5 oipTp (F-10)
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= ]
Vip = 45 05, * (4 9§

! '
ip + 45 05T, (F-11)

(wk)Ci = (¢,;)Ci op + ¢ (o,;)ci * (dpp op + & okT)TCi (F-12)

The species source function o; can be treated in a similar manner.

Thus,
Oi(p:p’Ck) = oi'(p’T’ck) (F-13)

where o/ is given by the law of mass action in Eq. (6).

d

Vi v!;
, N \ n [oc, \ n [oc, \?
o = Wy ) Oy - Vi) |Ker T W, - K T W. (F-14)
r=1 =1\ 7 =1\ i

The specific reaction rate constants Kfr and Krr are functions of temper-

ature only. Taking derivatives of Eq. (F-13) gives

9ip = %p * %7 Tp = 03T TP (F-15)

= ' -
oip oip + OiT Tp (F-16)
- L -
(o e, = (opde, * %t T, (F-17)
i i i
The perfect gas law is given by Eq. (8).
T= —P2 (F-18)

k=1
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Taking partial derivatives of Eq. (F-18) results in the following

expressions.
T
Tp = 5 (F-19)
T
T = = F-20
o= o (F-20)
RiT
Tci B - —-R— (F-ZI)

Substituting Eqs. (F-19) through (F-21) into Eqs. (F-10) through

(F-12) and Eqs. (F-15) through (F-17) yields the following results.

T
Yip = (djp of + ¢ oip) 7 (F-22)
V. = 6! 0! - (6! 0! + ¢! ol.) T (F-23)
ip i “ip iT i i "iT o
RiT
= - ! s -
(wk)ci (¢i)ci op * ¢i(0£)ci (¢ﬁT op * ok UﬂT) R (F-24)
T
%p = %T P (F-25)
- T -
oip = oip - GiT 3 (F-26)
RiT
= ' - . -

Substituting Eqs. (F-22) through (F-27) into Eqs. (F-1) through (F-3)

results in the following equations for K K4, and Ji‘

3,
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n
I (el + g0l (F-28)

1
o~
~
=
N
o
o
A
Q
+
=
»

!+ g.)o! (F-29)

'
-
1]
oa
[
o)
<[
]
=
F-
t~ 3
~~
-
P
N
A
|
-3
B
N I
Q
-

- 1 1 _ 1 -
L (hdy + g) (g + I = (hyop + g;)0p7 (F-30)
k=1 i k=1
All that remains to be done to obtain the final result is to evaluate
the derivatives of ¢i and oin defined by Eqs. (F-5) and (F-14) respectively,

and substitute the results into Eqs. (F-28) through (F-30). From Eq. (F-5),

d¢i yRidT + RdeY - (Y-I)CpidT - hidy (F-31)

| dey = [yR; - (y-1)CpyldT + [R;T - h,]dy (F-32)

The specific heat ratio y is given by

| y=c/c, (F-33)
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= 1 - L -
dy = o dCp - g-dC, (F-34)
v
IXI
C, = C,.C. (F-35)
P i=1 Pi~i
n
dCp = ] Cp,dC, (F-36)
i=1
l)':l
C = C .C. (F-37)
v i=1 vi 1l .
n
dc, = iZlcvidci (F-38)

Combining Eqs. (F-34) through (F-38) gives the following result for dy.
)
dy = v a, dC (F-39)
kel k™ k
where a, is defined by Eq. (24) and is equal to

a; = cl;_P (Cp; 'chi\ (F-40)

The coefficient of dT in Eq. (F-32) can be rearranged as follows.
Combining Eqs. (F-32), (F-39) and (F-41) gives

(F-42)

n
d¢! = Cpa,dT + (R,T - b)) v kz1akdck
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¢ir = Cpa; (F-43)
(6 = (RT - h)a (F-44)
i

The derivatives of oi can be obtained by differentiating Eq. (F-14).

M wvi v!
Wi 3 3 ? n [pC ) jr
g! = — Y. - v! K wtoon (=L -
ip o rel ir ir fr j=1 jr j=1 WJ
n n | pC, “?r
S I N (F-45)
T . jr . W,
j=1 7" j=1\ 7j
N dKfr n [pC. vjr
] - _J.. -
oir = W3 Z OViy - Vip) |37 jzl wj
"
dl(rr n [ peC. Vir
S W, (F-46)
j=1\ 7j
1
W, N n [ oC, jr
= K ' 3
()¢ C ! (Vir - Vi) KeeVir H ( W.) -
ir=l1 j=1 J
n [pC, “?r
- ' -1 -
Krrvir .H W, (F-47)
=1\ J

Substituting Eqs. (F-43) through (F-47) into Eqs. (F-28) through (F-30)
results in the following final form of the parameters KS’ K4, and Ji’
Wherever wi and oi appear in these equations, they have been replaced by

wi and o5 by means of Eqs. (F-6) and (F-13) respectively.



CPT n T B
Ky = - hy - lzlaiol P izl(hﬂ’i +gy) W x
N K c. \Vir & c. \V§
n |p jr n [pC.\ jr
) Oy - Vir) dgr . ( ) B d'?r . _Wl (F-48)
r=1 j=1 \ % =1\ "j
1 ’z‘ %’ ‘Z‘ 1 ‘X‘ ;
K, == g.0. + h, — P, - — (h,¢. + g. )W, x
4 P 4o i 4Pi=11 p1=141 i’7i
N n dKfr n .p_(il v;}r
"o -
X _z_ (vu' vir) l(fr . v;;r + (r-1)T dT .H W.
r=1 j=1 j=1 j
11
n T n pC VJI‘
- 1" -
Ecrr v+ (-DT 7 | T |- (F-49)
j =1\ 7]
n C,R.T
Ji=8 5y kzl Y(R,T - hJa, + — akJ oy
n N 1
- ' 1 '
kzl (hyty + g0 rzl Ckr - Vi) [C KerVir
R;T dk. g n [oC. Vir ]
- — — n —d K v -
R dT . W, C. rrir
- J:l J
RT A7 n f[oC. \Vir
- | T -wl (i=1,..,n) (F-50)
d =11 "




